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Motivation
In Assignment 1, we modelled programs as relations between initial
and final states of successful executions. So this Tic-Tac-Toe
program:

void move(int pos, char fill) {
if(board [pos] = ”E” && (fill = ”X” ‖ fill = ”O”)) {

board [pos] := fill ;
}
else abort;
}

can be modelled with this relation:

{(b, b′) : ∃n. ∀i .
(n = i → bi = E ∧ b′i 6= E) ∧
(n 6= i → bi = b′i )}
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Motivation

Such relational modelling is useful (spoiler alert: W8-9), but
doesn’t always capture everything we care about.

Possibility of failure is sometimes not captured. This:

void incr() {
if(Math.random() < .5) then abort; else

x := x + 1;
}
}

can be modelled by this relation over Z× Z

{(x , x ′) : x + 1 = x ′}
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Motivation

Such relational modelling is useful (spoiler alert: W8-9), but
doesn’t always capture everything we care about.

Possibility of failure is sometimes not captured. This:

void incr() {
if(Math.random() < .5) then abort else

x := x + 1;
}
}

can also be modelled by this relation over Z× Z:

{(x , x ′) : x + 1 = x ′}
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Motivation

Such relational modelling is useful (spoiler alert: W8-9), but
doesn’t always capture everything we care about.

Sometimes the final state isn’t what’s interesting.

void yes() {
while(true) print(”y\n”);
}

This program has no final states, so its relational model doesn’t
say much:

{}
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Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.
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Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

The semantics of a program:

States: functions from variable names to values

Transitions: execute a line of code.
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Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

A game of noughts and crosses

States: Board positions

Transitions: Legal moves
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Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

Stateful communication protocols: e.g. SMTP

States: Stages of communication

Transitions: Determined by commands given (e.g. HELO,
DATA, etc)
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Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

0 1 2 · · · 99 overflow
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Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

A robot that moves diagonally

States: Locations

Transitions: Moves
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Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

Die Hard jug problem: Given jugs of 3L and 5L, measure out
exactly 4L.

States: Defined by amount of water in each jug

Start state: No water in both jugs

Transitions: Pouring water (in, out, jug-to-jug)
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Definitions

A transition system is a pair (S ,→) where:

S is a set (of states), and

→ ⊆ S × S is a (transition) relation.

If (s, s ′) ∈ → we write s → s ′.

S may have a designated start state, s0 ∈ S

S may have designated final states, F ⊆ S

The transitions may be labelled by elements of a set L:

→ ⊆ S × L× S
(s, a, s ′) ∈ → is written as s

a−→ s ′

If → is a partial function we say that the system is
deterministic, otherwise it is non-deterministic
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Example: Bounded counter

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

0 1 2 · · · 99 overflow

S = {0, 1, . . . , 99, overflow}
→ = {(i , i + 1) : 0 ≤ i < 99}

∪ {(99, overflow)}
∪ {(overflow, overflow)}

s0 = 0

Deterministic
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Example: yes

Example

void yes() {
while(true) print(”y\n”);
}

so

”y\n”
S = {s0}
L = the set of strings

s0
”y\n”−−−→ s0

21



Example: Diagonally moving robot

Example

States: Locations

Transitions: Moves
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Example: Diagonally moving robot

Example

S = Z× Z

(x , y)→ (x ± 1, y ± 1)

Non-deterministic
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Example: Diagonally moving robot

Example

S = Z× Z

L = {NW ,NE ,SW ,SE}

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Deterministic
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Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

States: Defined by amount of water in each jug

Start state: No water in both jugs

Transitions: Pouring water (in, out, jug-to-jug)
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Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by

(i , j)→ (0, j) [empty 5L jug]
(i , j)→ (i , 0) [empty 3L jug]
(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]
(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]
(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]
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Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by
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(i , j)→ (i , 0) [empty 3L jug]
(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]
(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]
(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

31



Runs and reachability

Given a transition system (S ,→) and states s, s ′ ∈ S ,

a run (or trace) from s is a (possibly infinite) sequence
s1, s2, . . . such that s = s1 and si → si+1 for all i ≥ 1.

A run is maximal if it cannot be extended; i.e., it is either
infinite, or ends in a state from which there are no transitions.

we say s ′ is reachable from s, written s →∗ s ′, if (s, s ′) is in
the reflexive and transitive closure of →.

NB

s ′ is reachable from s if there is a run from s which contains s ′.
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Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

States: S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
Transition relation: (i , j)→ (0, j) etc.

Is (4, 0) reachable from (0, 0)?

Yes:
(0, 0) → (0, 3) → (3, 0)

↓
(0, 1) ← (5, 1) ← (3, 3)
↓

(1, 0) → (1, 3) → (4, 0)
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Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

States: S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
Transition relation: (i , j)→ (0, j) etc.

Is (4, 0) reachable from (0, 0)?

Yes:
(0, 0) → (0, 3) → (3, 0)

↓
(0, 1) ← (5, 1) ← (3, 3)
↓

(1, 0) → (1, 3) → (4, 0)
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Safety and Liveness

Transition systems can be used to study whether systems satisfy
safety and liveness properties.

Safety: something bad will never happen.

Liveness: something good will happen.

Contrast this with reachability:

Reachability: something good can happen.
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Safety and Liveness: Examples

Example

Suppose our transition system models a nuclear power plant.

Safety: the reactor never reaches the meltdown state.

Liveness: the power plant will keep supplying power.
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Safety and Liveness: Examples

Example

void yes() {
while(true){

print(”y\n”);
}
}

Safety: yes() never prints anything but ”y\n”.

Liveness: yes() will always print another ”y\n”.
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Safety and Liveness: Examples

Example

y := 1;
z := x ;
while(z 6= 0){
y := y ∗ z ;
z := z − 1;
}

Safety: If the program ever terminates, then y = x!

Liveness: The program will terminate

(How is that a safety property?)
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Safety and Liveness

A property is a set of infinite runs. (Terminating runs can be made
infinite by adding a self-loop to the final state.)

Safety: A safety property can be falsified by a finite prefix of
a behaviour.

Liveness: A liveness property can always be satisfied eventually.
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Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge

– Safety

When I come home, I’ll drop on the couch and drink a beer –
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory —
Safety

The program will allocate at least 100MB of memory –
Liveness

No two processes are simultaneously in their critical section —
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so – Liveness
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Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)?
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Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)?
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Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No
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Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No

isBlue((m, n)) := 2|(m + n)
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Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No

isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s → s ′

then isBlue(s ′)
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Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No

isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s → s ′

then isBlue(s ′)

isBlue((0, 0)) and ¬isBlue((0, 1))
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The invariant principle

A preserved invariant of a transition system is a unary predicate
ϕ on states such that if ϕ(s) holds and s → s ′ then ϕ(s ′) holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.

Proof sketch: Let s ′ be a state reachable from s. We can show
ϕ(s ′) by induction on the length of the run from s to s ′.
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Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

States: S = {(i , j) ∈ N× N : 0 ≤ i ≤ 6 and 0 ≤ j ≤ 3}
Transition relation: (i , j)→ (0, j) etc.

Is (4, 0) reachable from (0, 0)?

No. Consider ϕ((i , j)) = (3|i) ∧ (3|j).

58



Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.
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Partial correctness

Let (S ,→, s0,F ) be a transition system with start state s0 and
final states F and a ϕ be a unary predicate on S . We say the
system is partially correct for ϕ if ϕ(s ′) holds for all states s ′ ∈ F
that are reachable from s0.

NB

Partial correctness is a safety property. It doesn’t say whether the
transition system will ever reach a final state.
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Partial correctness example: Fast exponentiation

Example

Consider the following program in L:

x := m;
y := n;
r := 1;
while y > 0 do

if 2|y then
y := y/2

else
y := (y − 1)/2;
r := r ∗ x

fi;
x := x ∗ x

od
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Partial correctness example: Fast exponentiation

Example

States: Functions from {m, n, x , y , r} to N
Transitions:

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

63



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each line of code?

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?
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Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
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Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)
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Partial correctness example: Fast exponentiation
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Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?
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Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}

Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?
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Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?
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Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?
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Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?
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Total correctness = safety + liveness

A transition system (S ,→) terminates from a state s ∈ S if all
runs from s have finite length.

A transition system is totally correct for a unary predicate ϕ, if
it terminates (from s0) and ϕ holds in the last state of every run.
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Measure

In a transition system (S ,→), a measure is a function f : S → N.

A measure is strictly decreasing if s → s ′ implies f (s ′) < f (s).

Theorem

If f is a strictly decreasing measure, then the length of any run
from s is at most f (s).
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Measure

In a transition system (S ,→), a measure is a function f : S → N.

A measure is strictly decreasing if s → s ′ implies f (s ′) < f (s).

Theorem

If f is a strictly decreasing measure, then the length of any run
from s is at most f (s).
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Termination example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop:

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Measure:

f ((x , y , r)) = y
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Termination example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop:

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Measure: f ((x , y , r)) = y
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Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata
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Interaction with the environment

We can model the system interacting with an external entity via
inputs (Σ) and outputs (Γ) by using labelled transitions:
→⊆ S × L× S where L = Σ× Γ

We’ll look at categories of input/output transition systems:

Acceptors: Accept/reject a sequence of inputs

(Relations)

Transducers: Take a sequence of inputs and produce a sequence
of outputs

(Functions)
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Interaction with the environment

We can model the system interacting with an external entity via
inputs (Σ) and outputs (Γ) by using labelled transitions:
→⊆ S × L× S where L = Σ× Γ

We’ll look at categories of input/output transition systems:

Acceptors: Accept/reject a sequence of inputs (Relations)

Transducers: Take a sequence of inputs and produce a sequence
of outputs (Functions)
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Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached
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Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached

Accepted sequences:

NE ,NE
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Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached

Accepted sequences:

NE ,NE

NE , SE ,NE ,NW
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Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached

Accepted sequences:

NE ,NE

NE , SE ,NE ,NW

NE ,NE ,NE ,SW ...
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Transducer example: Diagonally moving robot

Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW /x−−−−→ (x − 1, y + 1)

(x , y)
NE/x−−−→ (x + 1, y + 1)

(x , y)
SW /x−−−−→ (x − 1, y − 1)

(x , y)
SE/x−−−→ (x + 1, y − 1)

Input direction

Output x-coordinate
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Transducer example: Diagonally moving robot

Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW /x−−−−→ (x − 1, y + 1)

(x , y)
NE/x−−−→ (x + 1, y + 1)

(x , y)
SW /x−−−−→ (x − 1, y − 1)

(x , y)
SE/x−−−→ (x + 1, y − 1)

Input direction

Output x-coordinate

Input: NE ,SE ,NE ,NW

Output: 1, 2, 3, 2
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Transducer example: Diagonally moving robot

Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW /y−−−−→ (x − 1, y + 1)

(x , y)
NE/y−−−→ (x + 1, y + 1)

(x , y)
SW /y−−−−→ (x − 1, y − 1)

(x , y)
SE/y−−−→ (x + 1, y − 1)

Input direction

Output y -coordinate

Input: NE ,SE ,NE ,NW

Output: 1, 0, 1, 2
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Acceptor example: Die Hard jug problem

Example

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}

s0 = (0, 0)

→ given by

(i , j)
E5−→ (0, j) [empty 5L jug]

(i , j)
E3−→ (i , 0) [empty 3L jug]

(i , j)
F5−→ (5, j) [fill 5L jug]

(i , j)
F3−→ (i , 3) [fill 3L jug]

(i , j)
E35−−→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]

(i , j)
E53−−→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]

(i , j)
F53−−→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]

(i , j)
F35−−→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

Accept if (4, 0) is reached:

e.g. F3, E35, F3, F53, E5, E35, F3, E35
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Acceptor example: Die Hard jug problem

Example

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}

s0 = (0, 0)

→ given by

(i , j)
E5−→ (0, j) [empty 5L jug]

(i , j)
E3−→ (i , 0) [empty 3L jug]

(i , j)
F5−→ (5, j) [fill 5L jug]

(i , j)
F3−→ (i , 3) [fill 3L jug]

(i , j)
E35−−→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]

(i , j)
E53−−→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]

(i , j)
F53−−→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]

(i , j)
F35−−→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

Accept if (4, 0) is reached: e.g. F3, E35, F3, F53, E5, E35, F3, E35
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ε-transitions

It can be useful to allow the system to transition without taking
input or producing output. We use the special symbol ε to denote
such transitions.
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Formal definitions

An acceptor is a Σ ∪ {ε}-labelled transition system
A = (S ,→,Σ, s0,F ) with a start state s0 ∈ S and a set of final
states F ⊆ S .

A transducer is a (Σ ∪ {ε})× (Γ ∪ {ε})-labelled transition system
T = (S ,→,Σ, s0,F ) with a start state s0 ∈ S and a set of final
states F ⊆ S .
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Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata
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Finite state transition systems

State transition systems with a finite set of states are particularly
useful in Computer Science.

Acceptors: Finite state automata

Transducers: Mealy machines
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