
COMP2111 Week 7
Term 1, 2024

State machines

1



Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata

2



Motivation
In Assignment 1, we modelled programs as relations between initial
and final states of successful executions. So this Tic-Tac-Toe
program:

void move(int pos, char fill) {
if(board [pos] = ”E” && (fill = ”X” ‖ fill = ”O”)) {

board [pos] := fill ;
}
else abort;
}

can be modelled with this relation:

{(b, b′) : ∃n. ∀i .
(n = i → bi = E ∧ b′i 6= E) ∧
(n 6= i → bi = b′i )}

3



Motivation

Such relational modelling is useful (spoiler alert: W8-9), but
doesn’t always capture everything we care about.

Possibility of failure is sometimes not captured. This:

void incr() {
if(Math.random() < .5) then abort; else

x := x + 1;
}
}

can be modelled by this relation over Z× Z

{(x , x ′) : x + 1 = x ′}

4



Motivation

Such relational modelling is useful (spoiler alert: W8-9), but
doesn’t always capture everything we care about.

Possibility of failure is sometimes not captured. This:

void incr() {
if(Math.random() < .5) then abort; else

x := x + 1;
}
}

can be modelled by this relation over Z× Z:

{(x , x ′) : x + 1 = x ′}

5



Motivation

Such relational modelling is useful (spoiler alert: W8-9), but
doesn’t always capture everything we care about.

Possibility of failure is sometimes not captured. This:

void incr() {
if(Math.random() < .5) then abort else

x := x + 1;
}
}

can also be modelled by this relation over Z× Z:

{(x , x ′) : x + 1 = x ′}

6



Motivation

Such relational modelling is useful (spoiler alert: W8-9), but
doesn’t always capture everything we care about.

Sometimes the final state isn’t what’s interesting.

void yes() {
while(true) print(”y\n”);
}

This program has no final states, so its relational model doesn’t
say much:

{}

7



Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

8



Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

The semantics of a program:

States: functions from variable names to values

Transitions: execute a line of code.

9



Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

A game of noughts and crosses

States: Board positions

Transitions: Legal moves

10



Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

Stateful communication protocols: e.g. SMTP

States: Stages of communication

Transitions: Determined by commands given (e.g. HELO,
DATA, etc)

11



Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

0 1 2 · · · 99 overflow

12



Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

A robot that moves diagonally

States: Locations

Transitions: Moves

13



Motivation
State machines model step-by-step processes with:

A set of states, possibly including a designated start state.
A transition relation, detailing how to move (transition) from
one state to another.

Example

Die Hard jug problem: Given jugs of 3L and 5L, measure out
exactly 4L.

States: Defined by amount of water in each jug

Start state: No water in both jugs

Transitions: Pouring water (in, out, jug-to-jug)

14



Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata

15



Definitions

A transition system is a pair (S ,→) where:

S is a set (of states), and

→ ⊆ S × S is a (transition) relation.

If (s, s ′) ∈ → we write s → s ′.

S may have a designated start state, s0 ∈ S

S may have designated final states, F ⊆ S

The transitions may be labelled by elements of a set L:

→ ⊆ S × L× S
(s, a, s ′) ∈ → is written as s

a−→ s ′

If → is a partial function we say that the system is
deterministic, otherwise it is non-deterministic

16



Definitions

A transition system is a pair (S ,→) where:

S is a set (of states), and

→ ⊆ S × S is a (transition) relation.

If (s, s ′) ∈ → we write s → s ′.

S may have a designated start state, s0 ∈ S

S may have designated final states, F ⊆ S

The transitions may be labelled by elements of a set L:

→ ⊆ S × L× S
(s, a, s ′) ∈ → is written as s

a−→ s ′

If → is a partial function we say that the system is
deterministic, otherwise it is non-deterministic

17



Definitions

A transition system is a pair (S ,→) where:

S is a set (of states), and

→ ⊆ S × S is a (transition) relation.

If (s, s ′) ∈ → we write s → s ′.

S may have a designated start state, s0 ∈ S

S may have designated final states, F ⊆ S

The transitions may be labelled by elements of a set L:

→ ⊆ S × L× S
(s, a, s ′) ∈ → is written as s

a−→ s ′

If → is a partial function we say that the system is
deterministic, otherwise it is non-deterministic

18



Definitions

A transition system is a pair (S ,→) where:

S is a set (of states), and

→ ⊆ S × S is a (transition) relation.

If (s, s ′) ∈ → we write s → s ′.

S may have a designated start state, s0 ∈ S

S may have designated final states, F ⊆ S

The transitions may be labelled by elements of a set L:

→ ⊆ S × L× S
(s, a, s ′) ∈ → is written as s

a−→ s ′

If → is a partial function we say that the system is
deterministic, otherwise it is non-deterministic

19



Example: Bounded counter

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

0 1 2 · · · 99 overflow

S = {0, 1, . . . , 99, overflow}
→ = {(i , i + 1) : 0 ≤ i < 99}

∪ {(99, overflow)}
∪ {(overflow, overflow)}

s0 = 0

Deterministic

20



Example: yes

Example

void yes() {
while(true) print(”y\n”);
}

so

”y\n”
S = {s0}
L = the set of strings

s0
”y\n”−−−→ s0

21



Example: Diagonally moving robot

Example

States: Locations

Transitions: Moves

22



Example: Diagonally moving robot

Example

S = Z× Z

(x , y)→ (x ± 1, y ± 1)

Non-deterministic

23



Example: Diagonally moving robot

Example

S = Z× Z

L = {NW ,NE ,SW ,SE}

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Deterministic

24



Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

States: Defined by amount of water in each jug

Start state: No water in both jugs

Transitions: Pouring water (in, out, jug-to-jug)

25



Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by

(i , j)→ (0, j) [empty 5L jug]
(i , j)→ (i , 0) [empty 3L jug]
(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]
(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]
(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

26



Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by

(i , j)→ (0, j) [empty 5L jug]
(i , j)→ (i , 0) [empty 3L jug]

(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]
(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]
(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

27



Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by

(i , j)→ (0, j) [empty 5L jug]
(i , j)→ (i , 0) [empty 3L jug]

(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]

(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]
(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

28



Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by

(i , j)→ (0, j) [empty 5L jug]
(i , j)→ (i , 0) [empty 3L jug]
(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]

(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]

(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

29



Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by

(i , j)→ (0, j) [empty 5L jug]
(i , j)→ (i , 0) [empty 3L jug]
(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]
(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]

(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

30



Example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
s0 = (0, 0)

→ given by

(i , j)→ (0, j) [empty 5L jug]
(i , j)→ (i , 0) [empty 3L jug]
(i , j)→ (5, j) [fill 5L jug]
(i , j)→ (i , 3) [fill 3L jug]
(i , j)→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]
(i , j)→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]
(i , j)→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]
(i , j)→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

31



Runs and reachability

Given a transition system (S ,→) and states s, s ′ ∈ S ,

a run (or trace) from s is a (possibly infinite) sequence
s1, s2, . . . such that s = s1 and si → si+1 for all i ≥ 1.

A run is maximal if it cannot be extended; i.e., it is either
infinite, or ends in a state from which there are no transitions.

we say s ′ is reachable from s, written s →∗ s ′, if (s, s ′) is in
the reflexive and transitive closure of →.

NB

s ′ is reachable from s if there is a run from s which contains s ′.

32



Runs and reachability

Given a transition system (S ,→) and states s, s ′ ∈ S ,

a run (or trace) from s is a (possibly infinite) sequence
s1, s2, . . . such that s = s1 and si → si+1 for all i ≥ 1.

A run is maximal if it cannot be extended; i.e., it is either
infinite, or ends in a state from which there are no transitions.

we say s ′ is reachable from s, written s →∗ s ′, if (s, s ′) is in
the reflexive and transitive closure of →.

NB

s ′ is reachable from s if there is a run from s which contains s ′.

33



Runs and reachability

Given a transition system (S ,→) and states s, s ′ ∈ S ,

a run (or trace) from s is a (possibly infinite) sequence
s1, s2, . . . such that s = s1 and si → si+1 for all i ≥ 1.

A run is maximal if it cannot be extended; i.e., it is either
infinite, or ends in a state from which there are no transitions.

we say s ′ is reachable from s, written s →∗ s ′, if (s, s ′) is in
the reflexive and transitive closure of →.

NB

s ′ is reachable from s if there is a run from s which contains s ′.

34



Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

States: S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
Transition relation: (i , j)→ (0, j) etc.

Is (4, 0) reachable from (0, 0)?

Yes:
(0, 0) → (0, 3) → (3, 0)

↓
(0, 1) ← (5, 1) ← (3, 3)
↓

(1, 0) → (1, 3) → (4, 0)

35



Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

States: S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}
Transition relation: (i , j)→ (0, j) etc.

Is (4, 0) reachable from (0, 0)?

Yes:
(0, 0) → (0, 3) → (3, 0)

↓
(0, 1) ← (5, 1) ← (3, 3)
↓

(1, 0) → (1, 3) → (4, 0)

36



Safety and Liveness

Transition systems can be used to study whether systems satisfy
safety and liveness properties.

Safety: something bad will never happen.

Liveness: something good will happen.

Contrast this with reachability:

Reachability: something good can happen.

37



Safety and Liveness: Examples

Example

Suppose our transition system models a nuclear power plant.

Safety: the reactor never reaches the meltdown state.

Liveness: the power plant will keep supplying power.

38



Safety and Liveness: Examples

Example

void yes() {
while(true){

print(”y\n”);
}
}

Safety: yes() never prints anything but ”y\n”.

Liveness: yes() will always print another ”y\n”.

39



Safety and Liveness: Examples

Example

y := 1;
z := x ;
while(z 6= 0){
y := y ∗ z ;
z := z − 1;
}

Safety: If the program ever terminates, then y = x!

Liveness: The program will terminate

(How is that a safety property?)

40



Safety and Liveness

A property is a set of infinite runs. (Terminating runs can be made
infinite by adding a self-loop to the final state.)

Safety: A safety property can be falsified by a finite prefix of
a behaviour.

Liveness: A liveness property can always be satisfied eventually.

41



Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge

– Safety

When I come home, I’ll drop on the couch and drink a beer –
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory —
Safety

The program will allocate at least 100MB of memory –
Liveness

No two processes are simultaneously in their critical section —
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so – Liveness

42



Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge – Safety

When I come home, I’ll drop on the couch and drink a beer

–
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory —
Safety

The program will allocate at least 100MB of memory –
Liveness

No two processes are simultaneously in their critical section —
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so – Liveness

43



Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge – Safety

When I come home, I’ll drop on the couch and drink a beer –
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory

—
Safety

The program will allocate at least 100MB of memory –
Liveness

No two processes are simultaneously in their critical section —
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so – Liveness

44



Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge – Safety

When I come home, I’ll drop on the couch and drink a beer –
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory —
Safety

The program will allocate at least 100MB of memory

–
Liveness

No two processes are simultaneously in their critical section —
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so – Liveness

45



Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge – Safety

When I come home, I’ll drop on the couch and drink a beer –
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory —
Safety

The program will allocate at least 100MB of memory –
Liveness

No two processes are simultaneously in their critical section

—
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so – Liveness

46



Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge – Safety

When I come home, I’ll drop on the couch and drink a beer –
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory —
Safety

The program will allocate at least 100MB of memory –
Liveness

No two processes are simultaneously in their critical section —
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so

– Liveness

47



Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge – Safety

When I come home, I’ll drop on the couch and drink a beer –
Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory —
Safety

The program will allocate at least 100MB of memory –
Liveness

No two processes are simultaneously in their critical section —
Safety

If a process wishes to enter its critical section, it will
eventually be allowed to do so – Liveness

48



Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata

49



Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)?

50



Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)?

51



Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No

52



Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No

isBlue((m, n)) := 2|(m + n)

53



Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No

isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s → s ′

then isBlue(s ′)

54



Safety example: Diagonally moving robot

Example

Starting at (0, 0)

Can the robot get to (0, 1)? No

isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s → s ′

then isBlue(s ′)

isBlue((0, 0)) and ¬isBlue((0, 1))

55



The invariant principle

A preserved invariant of a transition system is a unary predicate
ϕ on states such that if ϕ(s) holds and s → s ′ then ϕ(s ′) holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.

Proof sketch: Let s ′ be a state reachable from s. We can show
ϕ(s ′) by induction on the length of the run from s to s ′.

56



The invariant principle

A preserved invariant of a transition system is a unary predicate
ϕ on states such that if ϕ(s) holds and s → s ′ then ϕ(s ′) holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.

Proof sketch: Let s ′ be a state reachable from s. We can show
ϕ(s ′) by induction on the length of the run from s to s ′.

57



Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

States: S = {(i , j) ∈ N× N : 0 ≤ i ≤ 6 and 0 ≤ j ≤ 3}
Transition relation: (i , j)→ (0, j) etc.

Is (4, 0) reachable from (0, 0)?

No. Consider ϕ((i , j)) = (3|i) ∧ (3|j).

58



Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

States: S = {(i , j) ∈ N× N : 0 ≤ i ≤ 6 and 0 ≤ j ≤ 3}
Transition relation: (i , j)→ (0, j) etc.

Is (4, 0) reachable from (0, 0)?
No. Consider ϕ((i , j)) = (3|i) ∧ (3|j).

59



Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata

60



Partial correctness

Let (S ,→, s0,F ) be a transition system with start state s0 and
final states F and a ϕ be a unary predicate on S . We say the
system is partially correct for ϕ if ϕ(s ′) holds for all states s ′ ∈ F
that are reachable from s0.

NB

Partial correctness is a safety property. It doesn’t say whether the
transition system will ever reach a final state.

61



Partial correctness example: Fast exponentiation

Example

Consider the following program in L:

x := m;
y := n;
r := 1;
while y > 0 do

if 2|y then
y := y/2

else
y := (y − 1)/2;
r := r ∗ x

fi;
x := x ∗ x

od

62



Partial correctness example: Fast exponentiation

Example

States: Functions from {m, n, x , y , r} to N
Transitions:

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

63



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each line of code?

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

64



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

65



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

66



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}

Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

67



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

68



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

69



Partial correctness example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Start state: (m, n, 1)

Final states: {(x , 0, r) : x , r ∈ N}
Goal: Show partial correctness for ϕ((x , y , r)) := (r = mn)

Show ψ((x , y , r)) := (rxy = mn) is a preserved invariant...

How can we show total correctness?

70



Total correctness = safety + liveness

A transition system (S ,→) terminates from a state s ∈ S if all
runs from s have finite length.

A transition system is totally correct for a unary predicate ϕ, if
it terminates (from s0) and ϕ holds in the last state of every run.

71



Measure

In a transition system (S ,→), a measure is a function f : S → N.

A measure is strictly decreasing if s → s ′ implies f (s ′) < f (s).

Theorem

If f is a strictly decreasing measure, then the length of any run
from s is at most f (s).

72



Measure

In a transition system (S ,→), a measure is a function f : S → N.

A measure is strictly decreasing if s → s ′ implies f (s ′) < f (s).

Theorem

If f is a strictly decreasing measure, then the length of any run
from s is at most f (s).

73



Termination example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop:

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Measure:

f ((x , y , r)) = y

74



Termination example: Fast exponentiation

Example

States: (x , y , r) ∈ N× N× N
Transitions: Effect of each iteration of while loop:

(x , y , r)→ (x2, y/2, r) if y is even
(x , y , r)→ (x2, (y − 1)/2, rx) if y is odd

Measure: f ((x , y , r)) = y

75



Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata

76



Interaction with the environment

We can model the system interacting with an external entity via
inputs (Σ) and outputs (Γ) by using labelled transitions:
→⊆ S × L× S where L = Σ× Γ

We’ll look at categories of input/output transition systems:

Acceptors: Accept/reject a sequence of inputs

(Relations)

Transducers: Take a sequence of inputs and produce a sequence
of outputs

(Functions)

77



Interaction with the environment

We can model the system interacting with an external entity via
inputs (Σ) and outputs (Γ) by using labelled transitions:
→⊆ S × L× S where L = Σ× Γ

We’ll look at categories of input/output transition systems:

Acceptors: Accept/reject a sequence of inputs (Relations)

Transducers: Take a sequence of inputs and produce a sequence
of outputs (Functions)

78



Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached

79



Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached

Accepted sequences:

NE ,NE

80



Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached

Accepted sequences:

NE ,NE

NE , SE ,NE ,NW

81



Acceptor example: Diagonally moving robot
Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW−−→ (x − 1, y + 1)

(x , y)
NE−−→ (x + 1, y + 1)

(x , y)
SW−−→ (x − 1, y − 1)

(x , y)
SE−−→ (x + 1, y − 1)

Accept if (2, 2) reached

Accepted sequences:

NE ,NE

NE , SE ,NE ,NW

NE ,NE ,NE ,SW ...

82



Transducer example: Diagonally moving robot

Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW /x−−−−→ (x − 1, y + 1)

(x , y)
NE/x−−−→ (x + 1, y + 1)

(x , y)
SW /x−−−−→ (x − 1, y − 1)

(x , y)
SE/x−−−→ (x + 1, y − 1)

Input direction

Output x-coordinate

83



Transducer example: Diagonally moving robot

Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW /x−−−−→ (x − 1, y + 1)

(x , y)
NE/x−−−→ (x + 1, y + 1)

(x , y)
SW /x−−−−→ (x − 1, y − 1)

(x , y)
SE/x−−−→ (x + 1, y − 1)

Input direction

Output x-coordinate

Input: NE ,SE ,NE ,NW

Output: 1, 2, 3, 2

84



Transducer example: Diagonally moving robot

Example

S = Z× Z

s0 = (0, 0)

(x , y)
NW /y−−−−→ (x − 1, y + 1)

(x , y)
NE/y−−−→ (x + 1, y + 1)

(x , y)
SW /y−−−−→ (x − 1, y − 1)

(x , y)
SE/y−−−→ (x + 1, y − 1)

Input direction

Output y -coordinate

Input: NE ,SE ,NE ,NW

Output: 1, 0, 1, 2

85



Acceptor example: Die Hard jug problem

Example

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}

s0 = (0, 0)

→ given by

(i , j)
E5−→ (0, j) [empty 5L jug]

(i , j)
E3−→ (i , 0) [empty 3L jug]

(i , j)
F5−→ (5, j) [fill 5L jug]

(i , j)
F3−→ (i , 3) [fill 3L jug]

(i , j)
E35−−→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]

(i , j)
E53−−→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]

(i , j)
F53−−→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]

(i , j)
F35−−→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

Accept if (4, 0) is reached:

e.g. F3, E35, F3, F53, E5, E35, F3, E35

86



Acceptor example: Die Hard jug problem

Example

S = {(i , j) ∈ N× N : 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3}

s0 = (0, 0)

→ given by

(i , j)
E5−→ (0, j) [empty 5L jug]

(i , j)
E3−→ (i , 0) [empty 3L jug]

(i , j)
F5−→ (5, j) [fill 5L jug]

(i , j)
F3−→ (i , 3) [fill 3L jug]

(i , j)
E35−−→ (i + j , 0) if i + j ≤ 5 [empty 3L jug into 5L jug]

(i , j)
E53−−→ (0, i + j) if i + j ≤ 3 [empty 5L jug into 3L jug]

(i , j)
F53−−→ (5, j − 5 + i)) if i + j ≥ 5 [fill 5L jug from 3L jug]

(i , j)
F35−−→ (i − 3 + j , 3) if i + j ≥ 3 [fill 3L jug from 5L jug]

Accept if (4, 0) is reached: e.g. F3, E35, F3, F53, E5, E35, F3, E35

87



ε-transitions

It can be useful to allow the system to transition without taking
input or producing output. We use the special symbol ε to denote
such transitions.

88



Formal definitions

An acceptor is a Σ ∪ {ε}-labelled transition system
A = (S ,→,Σ, s0,F ) with a start state s0 ∈ S and a set of final
states F ⊆ S .

A transducer is a (Σ ∪ {ε})× (Γ ∪ {ε})-labelled transition system
T = (S ,→,Σ, s0,F ) with a start state s0 ∈ S and a set of final
states F ⊆ S .

89



Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination

Input and output

Finite automata

90



Finite state transition systems

State transition systems with a finite set of states are particularly
useful in Computer Science.

Acceptors: Finite state automata

Transducers: Mealy machines

91


