COMP2111 Week 7 Term 1, 2024 State machines

1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

イロト イヨト イヨト 一日

Motivation

- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

In Assignment 1, we modelled programs as relations between initial and final states of successful executions. So this Tic-Tac-Toe program:

```
void move(int pos, char fill) {
    if(board[pos] = "E" && (fill = "X" || fill = "O")) {
        board[pos] := fill;
    }
    else abort;
}
```

can be modelled with this relation:

$$\begin{array}{rcl} \{(b,b') & : & \exists n. \forall i. \\ & & (n=i \ \rightarrow \ b_i = \mathsf{E} \land b'_i \neq \mathsf{E}) \land \\ & & (n \neq i \rightarrow b_i = b'_i) \} \end{array}$$

イロン 不同 とくほど 不良 とうほ

Such relational modelling is useful (spoiler alert: W8-9), but doesn't always capture everything we care about.

Such relational modelling is useful (spoiler alert: W8-9), but doesn't always capture everything we care about.

Possibility of failure is sometimes not captured. This:

void incr() {

}

x := x + 1;

can be modelled by this relation over $\mathbb{Z}\times\mathbb{Z}$:

 $\{(x, x') : x+1 = x'\}$

Such relational modelling is useful (spoiler alert: W8-9), but doesn't always capture everything we care about.

Possibility of failure is sometimes not captured. This:

```
void incr() {
    if(Math.random() < .5) then abort else
        x := x + 1;
    }
}</pre>
```

can also be modelled by this relation over $\mathbb{Z} \times \mathbb{Z}$:

```
\{(x, x') : x+1 = x'\}
```

Such relational modelling is useful (spoiler alert: W8-9), but doesn't always capture everything we care about.

Sometimes the final state isn't what's interesting.

```
void yes() {
    while(true) print("y\n");
}
```

This program has no final states, so its relational model doesn't say much:

{}

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

State machines model step-by-step processes with:

- A set of *states*, possibly including a designated *start state*.
- A *transition relation*, detailing how to move (transition) from one state to another.

State machines model step-by-step processes with:

- A set of *states*, possibly including a designated *start state*.
- A *transition relation*, detailing how to move (transition) from one state to another.

Example

The semantics of a program:

- States: functions from variable names to values
- Transitions: execute a line of code.

State machines model step-by-step processes with:

- A set of *states*, possibly including a designated *start state*.
- A *transition relation*, detailing how to move (transition) from one state to another.

Example

A game of noughts and crosses

- States: Board positions
- Transitions: Legal moves

State machines model step-by-step processes with:

- A set of *states*, possibly including a designated *start state*.
- A *transition relation*, detailing how to move (transition) from one state to another.

Example

Stateful communication protocols: e.g. SMTP

- States: Stages of communication
- Transitions: Determined by commands given (e.g. HELO, DATA, etc)

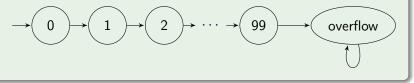
イロト イヨト イヨト 一日

State machines model step-by-step processes with:

- A set of *states*, possibly including a designated *start state*.
- A *transition relation*, detailing how to move (transition) from one state to another.

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

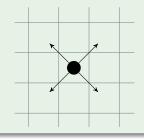


State machines model step-by-step processes with:

- A set of *states*, possibly including a designated *start state*.
- A *transition relation*, detailing how to move (transition) from one state to another.

Example

A robot that moves diagonally



States: Locations Transitions: Moves

State machines model step-by-step processes with:

- A set of *states*, possibly including a designated *start state*.
- A *transition relation*, detailing how to move (transition) from one state to another.

Example

Die Hard jug problem: Given jugs of 3L and 5L, measure out exactly 4L.

- States: Defined by amount of water in each jug
- Start state: No water in both jugs
- Transitions: Pouring water (in, out, jug-to-jug)

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

A transition system is a pair (S, \rightarrow) where:

• S is a set (of states), and

• $\rightarrow \subseteq S \times S$ is a (transition) relation.

If $(s, s') \in \rightarrow$ we write $s \rightarrow s'$.

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

A transition system is a pair (S, \rightarrow) where:

• S is a set (of states), and

• $\rightarrow \subseteq S \times S$ is a (transition) relation.

If $(s, s') \in \rightarrow$ we write $s \rightarrow s'$.

- S may have a designated start state, $s_0 \in S$
- S may have designated final states, $F \subseteq S$

A transition system is a pair (S, \rightarrow) where:

• S is a set (of states), and

• $\rightarrow \subseteq S \times S$ is a (transition) relation.

If $(s, s') \in \rightarrow$ we write $s \rightarrow s'$.

- S may have a designated start state, $s_0 \in S$
- S may have designated final states, $F \subseteq S$
- The transitions may be **labelled** by elements of a set L:

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ うへつ

- $\rightarrow \subseteq S \times L \times S$
- $(s, a, s') \in \rightarrow$ is written as $s \xrightarrow{a} s'$

A transition system is a pair (S, \rightarrow) where:

• S is a set (of states), and

• $\rightarrow \subseteq S \times S$ is a (transition) relation.

If $(s, s') \in \rightarrow$ we write $s \rightarrow s'$.

- S may have a designated start state, $s_0 \in S$
- S may have designated final states, $F \subseteq S$
- The transitions may be **labelled** by elements of a set *L*:

 $\bullet \ \to \subseteq S \times L \times S$

- $(s, a, s') \in \rightarrow$ is written as $s \xrightarrow{a} s'$
- If → is a partial function we say that the system is deterministic, otherwise it is non-deterministic

Example: Bounded counter

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

$$\rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow 99 \rightarrow \text{overflow}$$

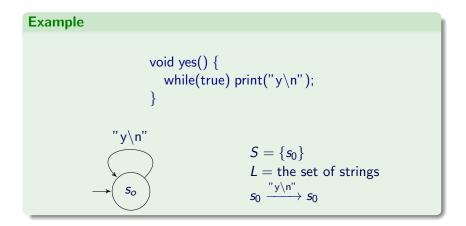
•
$$S = \{0, 1, \dots, 99, \text{overflow}\}$$

 $\rightarrow = \{(i, i+1) : 0 \le i < 99\}$
• $\cup \{(99, \text{overflow})\}$
 $\cup \{(\text{overflow}, \text{overflow})\}$

•
$$s_0 = 0$$

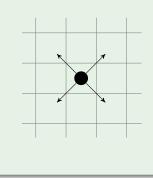
• Deterministic

Example: yes



Example: Diagonally moving robot

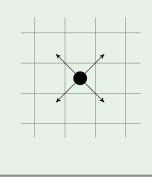
Example



States: Locations Transitions: Moves

Example: Diagonally moving robot

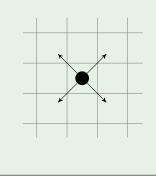
Example



 $S = \mathbb{Z} \times \mathbb{Z}$ $(x, y) \rightarrow (x \pm 1, y \pm 1)$ Non-deterministic

Example: Diagonally moving robot

Example



$$S = \mathbb{Z} \times \mathbb{Z}$$

$$L = \{NW, NE, SW, SE\}$$

$$(x, y) \xrightarrow{NW} (x - 1, y + 1)$$

$$(x, y) \xrightarrow{NE} (x + 1, y + 1)$$

$$(x, y) \xrightarrow{SW} (x - 1, y - 1)$$

$$(x, y) \xrightarrow{SE} (x + 1, y - 1)$$
Deterministic

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- States: Defined by amount of water in each jug
- Start state: No water in both jugs
- Transitions: Pouring water (in, out, jug-to-jug)

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- $\bullet \ \to {\rm given} \ {\rm by}$

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- $\bullet \ \rightarrow \text{given by}$
 - $(i,j) \rightarrow (0,j)$
 - $(i,j) \rightarrow (i,0)$

[empty 5L jug] [empty 3L jug]

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- $\bullet \ \to {\rm given} \ {\rm by}$

• $(i,j) \rightarrow (5,j)$ • $(i,j) \rightarrow (i,3)$ [fill 5L jug] [fill 3L jug]

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- $\bullet \ \to {\rm given} \ {\rm by}$

•
$$(i,j) \rightarrow (i+j,0)$$
 if $i+j \le 5$
• $(i,j) \rightarrow (0,i+j)$ if $i+j \le 3$

[empty 3L jug into 5L jug] [empty 5L jug into 3L jug]

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- $\bullet \ \to {\rm given} \ {\rm by}$

$$\begin{array}{ll} \bullet & (i,j) \rightarrow (5,j-5+i)) \text{ if } i+j \geq 5 \\ \bullet & (i,j) \rightarrow (i-3+j,3) \text{ if } i+j \geq 3 \end{array} \begin{array}{ll} \text{[fill 5L jug from 3L jug]} \\ \text{[fill 3L jug from 5L jug]} \end{array}$$

Example

Given jugs of 3L and 5L, measure out exactly 4L.

•
$$S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$$

•
$$s_0 = (0, 0)$$

 $\bullet \ \rightarrow {\rm given} \ {\rm by}$

•
$$(i,j) \rightarrow (0,j)$$

• $(i,i) \rightarrow (i,0)$

$$(i,j) \rightarrow (5,j)$$
$$(i,i) \rightarrow (i,3)$$

•
$$(i,j) \to (i+j,0)$$
 if $i+j \le 5$
• $(i,j) \to (0,i+j)$ if $i+j \le 3$

•
$$(i,j) \to (5,j-5+i))$$
 if $i+j \ge 5$
• $(i,j) \to (i-3+j,3)$ if $i+j \ge 3$

[empty 5L jug] [empty 3L jug] [fill 5L jug] [fill 3L jug] [empty 3L jug into 5L jug] [empty 5L jug into 3L jug] [fill 5L jug from 3L jug] [fill 3L jug from 5L jug]

Runs and reachability

Given a transition system (S,
ightarrow) and states $s, s' \in S$,

• a **run** (or **trace**) from s is a (possibly infinite) sequence

 s_1, s_2, \ldots such that $s = s_1$ and $s_i \rightarrow s_{i+1}$ for all $i \ge 1$.

Runs and reachability

Given a transition system (S,
ightarrow) and states $s, s' \in S$,

- a **run** (or **trace**) from s is a (possibly infinite) sequence s_1, s_2, \ldots such that $s = s_1$ and $s_i \rightarrow s_{i+1}$ for all $i \ge 1$.
- A run is **maximal** if it cannot be extended; i.e., it is either infinite, or ends in a state from which there are no transitions.

イロト イクト イミト イミト ミー わらの

33

Runs and reachability

Given a transition system (S,
ightarrow) and states $s, s' \in S$,

- a **run** (or **trace**) from s is a (possibly infinite) sequence s_1, s_2, \ldots such that $s = s_1$ and $s_i \rightarrow s_{i+1}$ for all $i \ge 1$.
- A run is **maximal** if it cannot be extended; i.e., it is either infinite, or ends in a state from which there are no transitions.
- we say s' is reachable from s, written s →* s', if (s, s') is in the reflexive and transitive closure of →.

NB

s' is reachable from s if there is a run from s which contains s'.

Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- States: $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)?

Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- States: $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)?

Yes:

Safety and Liveness

Transition systems can be used to study whether systems satisfy **safety** and **liveness** properties.

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

Safety: something bad will never happen. **Liveness:** something good will happen.

Contrast this with reachability:

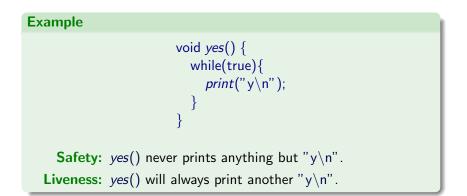
Reachability: something good can happen.

Safety and Liveness: Examples

Example

Suppose our transition system models a nuclear power plant. Safety: the reactor never reaches the meltdown state. Liveness: the power plant will keep supplying power.

Safety and Liveness: Examples



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Safety and Liveness: Examples

Example

y := 1;z := x; $while(z \neq 0) {$ y := y * z;z := z - 1; $}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Safety: If the program ever terminates, then y = x!**Liveness:** The program will terminate

(How is that a safety property?)

Safety and Liveness

A *property* is a set of infinite runs. (Terminating runs can be made infinite by adding a self-loop to the final state.)

Safety: A *safety property* can be falsified by a finite prefix of a behaviour.

Liveness: A liveness property can always be satisfied eventually.

Are they safety or liveness?

• When I come home, there must be beer in the fridge

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer

Are they safety or liveness?

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory

イロン 不同 とくほど 不良 とうほ

44

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory Liveness
- No two processes are simultaneously in their critical section

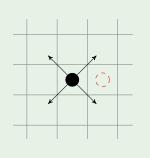
- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory Liveness
- No two processes are simultaneously in their critical section Safety
- If a process wishes to enter its critical section, it will eventually be allowed to do so

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory Liveness
- No two processes are simultaneously in their critical section Safety
- If a process wishes to enter its critical section, it will eventually be allowed to do so Liveness

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

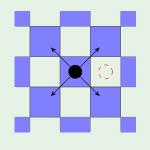
Example



Starting at (0,0)

Can the robot get to (0, 1)?

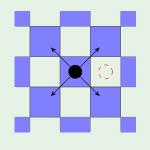
Example



Starting at (0,0)

Can the robot get to (0, 1)?

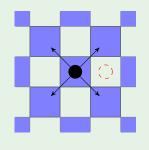
Example



Starting at (0,0)Can the robot get to (0,1)? No

・ロト・日本・日本・日本・日本・日本

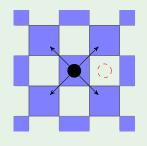
Example



Starting at (0,0)Can the robot get to (0,1)? No isBlue((m,n)) := 2|(m+n)

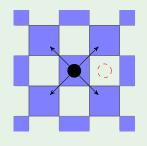
・ロト・日本・日本・ 日本・ シック

Example



Starting at (0,0)Can the robot get to (0,1)? No isBlue((m,n)) := 2|(m+n)if isBlue(s) and $s \rightarrow s'$ then isBlue(s')

Example



Starting at (0,0)Can the robot get to (0,1)? No isBlue((m,n)) := 2|(m+n)if isBlue(s) and $s \rightarrow s'$ then isBlue(s')isBlue((0,0)) and \neg isBlue((0,1))

The invariant principle

A **preserved invariant** of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \to s'$ then $\varphi(s')$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.

The invariant principle

A **preserved invariant** of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \to s'$ then $\varphi(s')$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.

Proof sketch: Let s' be a state reachable from s. We can show $\varphi(s')$ by induction on the length of the run from s to s'.

Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

• States: $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 6 \text{ and } 0 \le j \le 3\}$

• Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)?

58

Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

• States: $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 6 \text{ and } 0 \le j \le 3\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)? No. Consider $\varphi((i,j)) = (3|i) \land (3|j)$.

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

Partial correctness

Let (S, \rightarrow, s_0, F) be a transition system with start state s_0 and final states F and a φ be a unary predicate on S. We say the system is **partially correct for** φ if $\varphi(s')$ holds for all states $s' \in F$ that are reachable from s_0 .

NB

Partial correctness is a safety property. It doesn't say whether the transition system will ever reach a final state.

Example

Consider the following program in \mathcal{L} :

x := m; y := n;r := 1;while y > 0 do if 2|y then y := y/2else y := (y - 1)/2;r := r * xfi: x := x * xod

- States: Functions from $\{m, n, x, y, r\}$ to \mathbb{N}
- Transitions:

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each line of code?

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y-1)/2, rx)$ if y is odd

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y-1)/2, rx)$ if y is odd
- Start state: (m, n, 1)

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y-1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r) : x, r \in \mathbb{N}\}$

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y-1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r) : x, r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y-1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r) : x, r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x, y, r)) := (rx^y = m^n)$ is a preserved invariant...

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y 1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r) : x, r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x, y, r)) := (rx^y = m^n)$ is a preserved invariant...

How can we show total correctness?

Total correctness = safety + liveness

A transition system (S, \rightarrow) terminates from a state $s \in S$ if all runs from s have finite length.

A transition system is **totally correct for a unary predicate** φ , if it terminates (from s_0) and φ holds in the last state of every run.

Measure

In a transition system (S, \rightarrow) , a **measure** is a function $f : S \rightarrow \mathbb{N}$. A measure is **strictly decreasing** if $s \rightarrow s'$ implies f(s') < f(s).

Measure

In a transition system (S, \rightarrow) , a **measure** is a function $f : S \rightarrow \mathbb{N}$.

A measure is **strictly decreasing** if $s \rightarrow s'$ implies f(s') < f(s).

Theorem

If f is a strictly decreasing measure, then the length of any run from s is at most f(s).

Termination example: Fast exponentiation

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y-1)/2, rx)$ if y is odd

Measure:

Termination example: Fast exponentiation

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y 1)/2, rx)$ if y is odd

Measure: f((x, y, r)) = y

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

76

Interaction with the environment

We can model the system interacting with an external entity via inputs (Σ) and outputs (Γ) by using **labelled transitions**: $\rightarrow \subseteq S \times L \times S$ where $L = \Sigma \times \Gamma$

We'll look at categories of input/output transition systems:
Acceptors: Accept/reject a sequence of inputs
Transducers: Take a sequence of inputs and produce a sequence of outputs

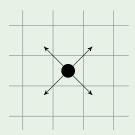
Interaction with the environment

We can model the system interacting with an external entity via inputs (Σ) and outputs (Γ) by using **labelled transitions**: $\rightarrow \subseteq S \times L \times S$ where $L = \Sigma \times \Gamma$

We'll look at categories of input/output transition systems:
Acceptors: Accept/reject a sequence of inputs (Relations)
Transducers: Take a sequence of inputs and produce a sequence of outputs (Functions)

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

Example



$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0, 0)$$

$$(x, y) \xrightarrow{NW} (x - 1, y + 1)$$

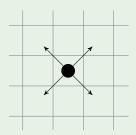
$$(x, y) \xrightarrow{NE} (x + 1, y + 1)$$

$$(x, y) \xrightarrow{SW} (x - 1, y - 1)$$

$$(x, y) \xrightarrow{SE} (x + 1, y - 1)$$

Accept if (2,2) reached

Example



$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0, 0)$$

$$(x, y) \xrightarrow{NW} (x - 1, y + 1)$$

$$(x, y) \xrightarrow{NE} (x + 1, y + 1)$$

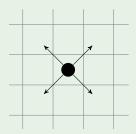
$$(x, y) \xrightarrow{SW} (x - 1, y - 1)$$

$$(x, y) \xrightarrow{SE} (x + 1, y - 1)$$

Accept if (2, 2) reached

Accepted sequences: *NE*, *NE*

Example

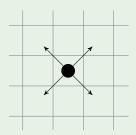


 $S = \mathbb{Z} \times \mathbb{Z}$ $s_0 = (0, 0)$ $(x, y) \xrightarrow{NW} (x - 1, y + 1)$ $(x, y) \xrightarrow{NE} (x + 1, y + 1)$ $(x, y) \xrightarrow{SW} (x - 1, y - 1)$ $(x, y) \xrightarrow{SE} (x + 1, y - 1)$

Accept if (2,2) reached

Accepted sequences: NE, NE NE, SE, NE, NW

Example



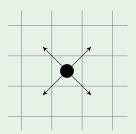
 $S = \mathbb{Z} \times \mathbb{Z}$ $s_0 = (0, 0)$ $(x, y) \xrightarrow{NW} (x - 1, y + 1)$ $(x, y) \xrightarrow{NE} (x + 1, y + 1)$ $(x, y) \xrightarrow{SW} (x - 1, y - 1)$ $(x, y) \xrightarrow{SE} (x + 1, y - 1)$

Accept if (2,2) reached

Accepted sequences: NE, NE NE, SE, NE, NW NE, NE, NE, SW ...

Transducer example: Diagonally moving robot

Example



$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW/x} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE/x} (x+1,y+1)$$

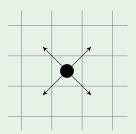
$$(x,y) \xrightarrow{SW/x} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE/x} (x+1,y-1)$$

Input direction Output *x*-coordinate

Transducer example: Diagonally moving robot

Example



$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW/x} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE/x} (x+1,y+1)$$

$$(x,y) \xrightarrow{SW/x} (x-1,y-1)$$

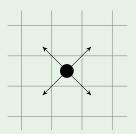
$$(x,y) \xrightarrow{SE/x} (x+1,y-1)$$

Input direction Output *x*-coordinate

Input: *NE*, *SE*, *NE*, *NW* Output: 1, 2, 3, 2

Transducer example: Diagonally moving robot

Example



$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW/y} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE/y} (x+1,y+1)$$

$$(x,y) \xrightarrow{SW/y} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE/y} (x+1,y-1)$$

Input direction Output *y*-coordinate

Input: *NE*, *SE*, *NE*, *NW* Output: 1, 0, 1, 2

Acceptor example: Die Hard jug problem

Example

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- $\bullet \ \rightarrow {\rm given} \ {\rm by}$
 - (*i*, *j*) ^{E5}→ (0, *j*) [empty 5L jug]
 (*i*, *j*) ^{E3}→ (*i*, 0) [empty 3L jug]
 (*i*, *j*) ^{F5}→ (5, *j*) [fill 5L jug]
 (*i*, *j*) ^{E35}→ (*i* + *j*, 0) if *i* + *j* ≤ 5 [empty 3L jug into 5L jug]
 (*i*, *j*) ^{E53}→ (0, *i* + *j*) if *i* + *j* ≤ 3 [empty 5L jug into 3L jug]
 (*i*, *j*) ^{E35}→ (*i* 3 + *j*, 3) if *i* + *j* ≥ 3 [fill 5L jug from 5L jug]

• Accept if (4,0) is reached:

Acceptor example: Die Hard jug problem

Example

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- $\bullet \ \rightarrow {\rm given} \ {\rm by}$
 - $(i, j) \xrightarrow{\text{E5}} (0, j)$ [empty 5L jug] • $(i, j) \xrightarrow{\text{E3}} (i, 0)$ [empty 3L jug] • $(i, j) \xrightarrow{\text{F5}} (5, j)$ [fill 5L jug] • $(i, j) \xrightarrow{\text{E35}} (i + j, 0)$ if $i + j \le 5$ [empty 3L jug into 5L jug] • $(i, j) \xrightarrow{\text{E53}} (0, i + j)$ if $i + j \le 3$ [empty 5L jug into 3L jug] • $(i, j) \xrightarrow{\text{F53}} (5, j - 5 + i))$ if $i + j \ge 5$ [fill 5L jug from 3L jug] • $(i, j) \xrightarrow{\text{F33}} (i - 3 + j, 3)$ if $i + j \ge 3$ [fill 3L jug from 5L jug]

• Accept if (4,0) is reached: e.g. F3, E35, F3, F53, E5, E35, F3, E35

ϵ -transitions

It can be useful to allow the system to transition without taking input or producing output. We use the special symbol ϵ to denote such transitions.

Formal definitions

An **acceptor** is a $\Sigma \cup \{\epsilon\}$ -labelled transition system $A = (S, \rightarrow, \Sigma, s_0, F)$ with a start state $s_0 \in S$ and a set of final states $F \subseteq S$.

A transducer is a $(\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\})$ -labelled transition system $T = (S, \rightarrow, \Sigma, s_0, F)$ with a start state $s_0 \in S$ and a set of final states $F \subseteq S$.

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

Finite state transition systems

State transition systems with a finite set of states are particularly useful in Computer Science.

Acceptors: Finite state automata

Transducers: Mealy machines